Experimental evidence for thermal spin transfer torque

S. Granville1*, H. Yu1,2, D. P. Yu2, J.-Ph. Ansermet1

1Ecole Polytechnique Fédérale de Lausanne, IPMC, Station 3, CH-1015 Lausanne-EPFL, Switzerland
2State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, People's Republic of China
* now at Industrial Research Ltd., Lower Hutt 5040, New Zealand

It has been predicted that a heat current can exert a spin torque on the magnetization in a nanostructure, analogous to the well-known spin-transfer torque induced by an electrical current. A number of theoretical studies have aroused interest in this subject, fed by the intriguing possibility of spin-current generation via thermoelectric effects. However, until recently experimental evidence for such a thermal spin transfer torque was lacking. We present measurements of the second harmonic voltage response of Co/Cu/Co pseudo-spin-valves deposited within Cu nanowires. We exploit the quasi-1D nature of the nanostructures to generate a heat current by way of a large temperature gradient between the Co layers. Both the magnitude of the second harmonic response and the switching field of the Co layers are found to be dependent on the heat current generated. These effects show that the magnetization dynamics of the pseudo-spin-valves are influenced by the heat current, providing evidence for a thermal spin torque exerted on the magnetization of the Co layers.